Numerical Integration of Periodic Functions: A Few Examples

نویسنده

  • J. A. C. Weideman
چکیده

The constant K has the same meaning as above. 1CAS = Computer Algebra System. 2The interval [0, 2π] is for convenience only. Everything we say can easily be extended to an arbitrary interval [a, b]. 3One notices that the error bound for the midpoint rule is one half that of the trapezoidal rule; compare (2) with (3). For a pretty geometrical explanation of why one can expect the midpoint rule to be better by about a factor of two, the reader is referred to Stewart [13, p. 460].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical integration using spline quasi-interpolants

In this paper, quadratic rules for obtaining approximate solution of definite integrals as well as single and double integrals using spline quasi-interpolants will be illustrated. The method is applied to a few test examples to illustrate the accuracy and the implementation of the method.

متن کامل

Numerical Solution of Second Kind Volterra and Fredholm Integral Equations Based on a Direct Method Via Triangular Functions

A numerical method for solving linear integral equations of the second kind is formulated. Based on a special representation of vector forms of triangular functions and the related operational matrix of integration, the integral equation reduces to a linear system of algebraic equations. Generation of this system needs no integration, so all calculations can easily be implemented. Numerical res...

متن کامل

Numerical solution of delay differential equations via operational matrices of hybrid of block-pulse functions and Bernstein polynomials

In this paper, we introduce hybrid of block-pulse functions and Bernstein polynomials and derive operational matrices of integration, dual, differentiation, product and delay of these hybrid functions by a general procedure that can be used for other polynomials or orthogonal functions. Then, we utilize them to solve delay differential equations and time-delay system. The method is based upon e...

متن کامل

NUMERICAL SOLUTION OF DELAY INTEGRAL EQUATIONS BY USING BLOCK PULSE FUNCTIONS ARISES IN BIOLOGICAL SCIENCES

This article proposes a direct method for solving three types of integral equations with time delay. By using operational matrix of integration, integral equations can be reduced to a linear lower triangular system which can be directly solved by forward substitution. Numerical examples shows that the proposed scheme have a suitable degree of accuracy.  

متن کامل

Numerical solution of system of linear integral equations via improvement of block-pulse functions

In this article, a numerical method based on  improvement of block-pulse functions (IBPFs) is discussed for solving the system of linear Volterra and Fredholm integral equations. By using IBPFs and their operational matrix of integration, such systems can be reduced to a linear system of algebraic equations. An efficient error estimation and associated theorems for the proposed method are also ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The American Mathematical Monthly

دوره 109  شماره 

صفحات  -

تاریخ انتشار 2002